World’s most accurate handheld vector network analyzer
World’s Most Accurate Handheld Vector Network Analyzer

FieldFox

The first step in ensuring that wireless communication systems are running at their optimum level is to verify that RF components in the system, such as cables, antennas, and filters are properly tested and kept in good condition. The majority of these tests are conducted in the field or in a warehouse, where bench top instruments are not readily available, testing space is limited, or where a power source is simply not available. Agilent’s handheld FieldFox RF Vector Network Analyzer (VNA) is designed to make network analysis measurements in the field easier, convenient, and the most reliable.

QuickCal revolutionizes calibration in the field

The number one challenge in making accurate network analyzer measurements in the field is reliability, where large temperature fluctuations are common. Agilent’s FieldFox RF VNA is the only handheld network analyzer with QuickCal technology that allows operators to easily correct for drift errors caused by temperature changes. QuickCal is a built-in calibration system that provides worry-free accuracy and reliability. FieldFox’s built-in standards make calibration simpler, by eliminating the need to carry mechanical calibration kits into the field.

Unmatched reliability for day-to-day tests

Whether you are testing a flight line for the air force, an RF system on a war ship, a wireless communication cable and antenna system, tuning RF components, or making other general purpose network analyzer measurements — the FieldFox RF VNA provides unmatched measurement reliability, stability, and efficiency for your every day test needs. The FieldFox RF VNA also builds on Agilent’s 40-year legacy of network analysis leadership in calibration, accuracy, and innovation.
FieldFox

Key differentiators

- Built-in *QuickCal* enables calibration without a cal kit
- Best measurement stability over time and temperature
- Industry’s only handheld network analyzer with MIL PRF 28800F Class 2 compliance with no exceptions
- Superior system dynamic range of 100 dB
- Easy-to-use, task-driven user interface
- Weather resistant, compact, and field-friendly design, no fan and vents

Key measurements

- Full 2-port error corrected S-parameters, magnitude and phase
- Time domain analysis with gating
- Cable and antenna test (distance-to-fault, return loss, and VSWR)
- Cable loss measurement (1-port)
- Insertion loss and transmission measurement (2-port)
- Magnitude, phase, Smith chart, polar display, group delay and more
- Vector voltmeter (1- and 2- channel)
- Power meter with external USB power sensor
Pick up FieldFox for its ergonomics

- Anti-glare 6.5 inch LCD display with LED backlight
- Convenient side strap makes it easy to hold and carry
- Task-driven keys are grouped to easily and naturally perform standard field measurements
- Portrait design and large buttons for easy operation — even with gloves on
- Dedicated marker keys for quick marker function access
- Backlit keypad
- Navigate between four traces using up/down arrows
- Connector covers help keep dust out

Dimensions:
- 7.4" W (188 mm)
- 11.5" H (292 mm)
...and depend on its durability and convenience

FieldFox

Test Port 1
Test Port 2

External reference and external trigger
Spacious connector design makes connections fast and simple
Quick-connect shoulder strap clips

Connector bay protects RF connectors

Spacious connector design makes connections fast and simple

Connector bay protects RF connectors

Connector bay protects RF connectors

Micro SD flash card slot for additional data storage

LAN port for remote control using SCPI and fast data transfer

USB ports for convenient data transfer and GPS receiver

Headphone jack

Gasketed doors protect ports from moisture

Easily accessible battery compartment
Key Measurements

FieldFox

Vector Network Analysis

The base FieldFox RF VNA provides transmission/reflection (T/R) measurements, or S11 and S21, with magnitude and phase.

Adding Option 122 (full 2-port S-parameters) brings new levels of accuracy and convenience for testing RF components. A full 2-port network analyzer lets you measure the forward and reverse characteristics of your components without having to disconnect, turn around, and reconnect them to the analyzer.

It also provides full 2-port calibration to give you the best measurement accuracy possible. Depending upon your application, you can choose the optimum performance level of an S-parameter analyzer (Option 122) or transmission reflection analyzer (base model).

You also can simultaneously measure and view all four S-parameters, with a single connection.

FieldFox VNA contains four independent, sensitive receivers. The receivers provide more than 100 dB of dynamic range for vector measurements of high rejection, narrowband devices such RF filters. The receivers also make possible full 2-port error correction with the Unknown Thru method, allowing you to measure non-insertable devices.

Make multiple measurements simultaneously

Smith chart display
Cable and antenna analyzer

Fifty to sixty percent of cell site problems are caused by faulty cables, connectors, and antennas. Degraded feed lines cause poor coverage, unnecessary handovers, paging failures and access failures on the uplink. To avoid service quality problems, it is critical to keep the cell sites’ cable and antenna systems in good condition.

Use FieldFox to make return loss, VSWR, insertion loss/transmission, one-port cable loss, and distance-to-fault (DTF) measurements. You can test antennas, cables, filters, and amplifiers with a single handheld instrument.

The built-in cable editor allows you to edit existing cable types on-site, and save them as new cable types with user defined names.

Key Measurements

FieldFox

Return loss and DTF measurements

FieldFox can make return loss and distance-to-fault measurements at the same time. It helps you correlate overall system degradation with specific faults in the cable and antenna system.

View and control the return loss and DTF displays independently

Insertion loss display
CalReady when the instrument is turned on

Save time and get right to work with FieldFox’s CalReady feature, which makes the unit calibration ready at either test port immediately following power on or preset. FieldFox is already calibrated and ready to make accurate measurements such as S11, S22, 1-port cable loss, VSWR, return loss, and DTF measurements at the test port without having to connect/disconnect additional cables or calibration devices.

Industry’s first and only QuickCal

FieldFox is the industry’s first and only handheld network analyzer with a built-in calibration capability that allows you to calibrate the network analyzer without carrying a calibration kit into the field. As with any test instrument, when you add an additional device to the test port, such as a jumper cable or adapter, you need to recalibrate using a calibration kit (cal kit). QuickCal eliminates the need to carry and use a cal kit, and also provides worry-free accuracy and excellent reliability. QuickCal allows the operator to easily correct drift errors caused by temperature changes during instrument operation.

The FieldFox RF VNA’s full 2-port QuickCal supports measurements such as transmission/reflection, S21, S12, S11, S22, 1-port cable loss, VSWR, return loss, DTF, and gain/insertion loss. Full 2-port QuickCal is based on Agilent’s Unknown Thru calibration methodology, providing an accurate way to measure a non-insertable device, such as a female-female filter.
Broadband calibration

FieldFox allows you to make broadband calibrations, which means the instrument is calibrated over the maximum frequency range. After a broadband calibration, you can change the frequency range or number of points without recalibrating the instrument. The calibration is interpolated, and accuracy is maintained.

User calibration kit support

FieldFox supports many Agilent standard calibration kits. In addition to CalReady and QuickCal, FieldFox also provides a comprehensive calibration utility. To obtain the most accurate measurement, users need to use cal kits that match their device connector types. FieldFox allows users to define their own mechanical calibration kits.

Power meter

FieldFox can connect with the Agilent U2000 Series USB power sensors to make RF/microwave power measurements up to 24 GHz.

FieldFox provides true average power measurements with a high dynamic range from –60 dBm to +44 dBm (sensor dependent).

The sensor has an internal zeroing function and the sensor does not require external calibration.

Electrical delay and port extension

For in-fixture measurements, use FieldFox’s port extension or electrical delay capability to easily extend the reference plane to the device interface for accurate measurements. You can use the electrical delay capability to measure deviation from linear phase by removing the linear portion of the phase delay.
Vector voltmeter

Using FieldFox’s vector voltmeter (VVM), the phase shift and electrical length of a device can be measured. By utilizing the “zero” function, the phase and electrical length of one device can be measured relative to a “golden device”. You can view results on the large display.

The VVM option also provides ratio measurements of two receivers or two channels, A/B or B/A. An external signal source is required for this measurement. You can use this capability to verify the magnitude and phase differences between multiple signal paths.

VVM applications:
- Cable trimming of phase matched cables
- Verifying the isolation of 2-port components
- Radio navigation – VHF omnidirectional radio range (VOR) and instrumentation landing system (ILS)

Time domain

With the time domain option, FieldFox computes the inverse Fourier transform of the frequency-domain data to display reflection or transmission coefficients versus time. Time domain gating can be used to remove unwanted responses such as connector mismatch or cable discontinuities, and the results can be displayed in either time or frequency domain. FieldFox’s time domain function supports both low pass mode and band pass mode, enabling users to measure both broadband and frequency-selective devices.

75 ohm device test

Most of the components used in cable TV systems are 75 ohm, like cables, filters, splitters and switches.

You can use the FieldFox RF VNA to measure 75-ohm devices easily. QuickCal, combined with a 50/75 ohm adapter (e.g., Agilent part: N9910X-846) at each port and a 75 ohm load, turns the instrument into a 75 ohm tester. Alternatively you can use any of Agilent’s 75 ohm calibration kits, along with a pair of 50/75 ohm adapters.
Feature and Benefit Summary

Comprehensive measurement capabilities

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector network analysis</td>
<td>Provides accurate network analysis of RF components and enables you to measure and display all four S-parameters simultaneously, with a single connection. This means you can quickly and accurately characterize the device under test, using a handheld instrument.</td>
</tr>
<tr>
<td>Cable and antenna test</td>
<td>Return loss/SWR measurements allow you to evaluate the impedance matching performance of a feed line across the frequency range of interest. Distance-to-fault measurements help you identify faults along a feed line. You can use these measurements to precisely pinpoint the location of damaged or degraded antennas, connectors, amplifiers, filters, duplexers, or other components. FieldFox provides up to a 1001 data-point resolution to help accurately locate faults and extend measurement distance.</td>
</tr>
<tr>
<td>Transmission test</td>
<td>Cable loss, Insertion loss, Amplifier gain Transmission tests are used to accurately measure cable loss, insertion loss (filters) and amplifier gain (tower mounted amplifier). FieldFox offers 2-port transmission magnitude and phase measurements with a typical dynamic range of 100 dB.</td>
</tr>
<tr>
<td>One-port cable loss</td>
<td>For already-installed cables, FieldFox accurately measures one-port cable loss. The instrument measures the actual cable loss, without the need for additional computations.</td>
</tr>
<tr>
<td>CalReady at test port</td>
<td>Each instrument is calibrated at the test ports. When you power up the instrument, it is ready to make accurate measurements such as S11, S22, one-port cable loss, VSWR, return loss and DTF at the test port.</td>
</tr>
<tr>
<td>QuickCal</td>
<td>The industry’s first and only built-in calibration system allows you to calibrate the network analyzer without carrying a calibration kit into the field. QuickCal eliminates the hassle of carrying and using a cal kit, plus provides worry-free accuracy and excellent reliability. QuickCal allows operators to easily correct for drift errors caused by temperature changes during instrument operation. Full 2-port QuickCal is based on Agilent’s Unknown Thru calibration methodology. It is an accurate way to measure non insertable devices, such as female-female diplexers.</td>
</tr>
<tr>
<td>Mechanical calibration</td>
<td>Open-short-load (OSL) calibration is standard in FieldFox. Common calibration kit constants are preloaded in the instrument. Additional kits can be added by users.</td>
</tr>
<tr>
<td>Time domain</td>
<td>Using the time domain feature, you can display reflection or transmission coefficients versus time. Time domain gating can be used to remove unwanted responses such as connector mismatch or cable discontinuities.</td>
</tr>
</tbody>
</table>
Feature and Benefit Summary

Comprehensive measurement capabilities continued

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interference rejection</td>
<td>The FieldFox RF VNA interference rejection mode is able to make reliable return loss and distance-to-fault measurements of cable and antenna systems under high interference signal environments. It can make valid measurements for interference signals coupled into the system up to +16 dBm.</td>
</tr>
<tr>
<td>Power meter</td>
<td>Makes accurate true average power measurements without the need for a power meter. The state-of-the-art Agilent USB power sensors provide measurements up to 24 GHz.</td>
</tr>
<tr>
<td>Smith chart</td>
<td>Smith charts can be used to display impedance matching characteristics in cable and antenna systems.</td>
</tr>
<tr>
<td>Vector voltmeter</td>
<td>The large vector voltmeter display makes it easy to match two or more device's electric length and ensure signals that travel on different devices have the same delay.</td>
</tr>
<tr>
<td>Electrical delay</td>
<td>Using the electrical delay function, you can remove the linear portion of the phase shift and view the deviation from linear phase.</td>
</tr>
<tr>
<td>Port extension</td>
<td>Allows you to extend the reference plan after calibration. This feature is useful for measurements such as in-fixture test, where calibrating at the DUT or reference plane is cumbersome.</td>
</tr>
<tr>
<td>GPS</td>
<td>Enables operators to find exact locations, and time/location stamp their measurement reports. The GPS information can be displayed on the screen, and saved as part of the image or data file, for reporting purposes.</td>
</tr>
</tbody>
</table>

Data management

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit lines</td>
<td>Automated pass/fail testing eliminates the guesswork from your test processes and helps ensure that your components are aligned and tested to the same specifications at all test stations. Pass/fail testing is easily accomplished with user-defined limit lines, which let you quickly and consistently compare measured data to test limits. The pass/fail results are displayed clearly on the instrument screen to minimize operator errors or misinterpretation.</td>
</tr>
<tr>
<td>Save/recall states</td>
<td>Save time and reduce operator errors with recall states. You can quickly switch between different manufacturing tests simply by recalling the appropriate instrument state. Saving and recalling states also eliminates operator errors that occur during repeated entry of instrument parameters. Each recall state contains all instrument parameters such as start and stop frequencies, power level, number of trace points, IF bandwidth, calibration data, markers, limit lines, and more.</td>
</tr>
<tr>
<td>Powerful marker functions</td>
<td>Speed up component test times by using the power of built-in data markers. Use the six markers per trace to display data in absolute or relative terms.</td>
</tr>
</tbody>
</table>
FieldFox

Field-proof usability

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transreflective display and backlit keys</td>
<td>The display is designed for easy viewing in indoor and outdoor settings and in direct sunlight and darkness. Access different display modes via softkeys.</td>
</tr>
<tr>
<td>Functional key access</td>
<td>Front-panel keys make it easy to perform tasks and make measurements.</td>
</tr>
<tr>
<td>One-button measurement</td>
<td>Provides task-driven user interface to simplify the measurements.</td>
</tr>
</tbody>
</table>

Rugged design

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water-resistant chassis, keypad and case design</td>
<td>The case is made from polycarbonates that withstand wide temperature ranges and salty, humid environments.</td>
</tr>
<tr>
<td>RF connector protection</td>
<td>A specially designed connector bay protects the RF connectors from damage during drops or other external impacts.</td>
</tr>
<tr>
<td>Dust-free design</td>
<td>With no vents or fans in the case, FieldFox resists dust for better equipment reliability.</td>
</tr>
<tr>
<td>Meets tough environmental standard</td>
<td>Industry’s only handheld network analyzer with MIL Class 2 compliance with no exceptions.</td>
</tr>
<tr>
<td>Gasketed ports</td>
<td>Protects instrument from moisture.</td>
</tr>
</tbody>
</table>

Modern connectivity

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB 2.0 ports</td>
<td>Two USB 2.0 ports can be used to transfer files.</td>
</tr>
<tr>
<td>LAN port</td>
<td>Used for data transfer, remote control, and SCPI programming. Also used with GPS receiver.</td>
</tr>
<tr>
<td>SCPI support</td>
<td>SCPI over LAN allows users to automate tests or control a FieldFox from a remote location.</td>
</tr>
<tr>
<td>Micro SD flash card slot</td>
<td>Use as a data storage device.</td>
</tr>
<tr>
<td>FieldFox Data Link software</td>
<td>Transfer data from the instrument to a PC for back-office applications such as baseline analysis and report generation.</td>
</tr>
</tbody>
</table>
Specifications

Specification (spec.):
Warranted performance. Specifications include guardbands to account for the expected statistical performance distribution, measurement uncertainties, and changes in performance due to environmental conditions. The following conditions must be met:

- FieldFox has been turned on at least 10 minutes unless otherwise specified
- FieldFox is within its calibration cycle
- Storage or operation at 25 °C ±5 °C range (unless otherwise stated)

Typical (typ.):
Expected performance of an average unit over a 20 °C to 30 °C temperature range, unless otherwise indicated; does not include guardbands. It is not covered by the product warranty. The FieldFox RF VNA must be within its calibration cycle.

Nominal (nom.):
A general, descriptive term or design parameter. It is not tested, and not covered by the product warranty.

Network analysis

Measurements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S11, S21</td>
<td>Magnitude and phase</td>
</tr>
<tr>
<td>S12, S22</td>
<td>Magnitude and phase (Option 122)</td>
</tr>
<tr>
<td>Display</td>
<td>Log, linear, phase, group delay, VSWR, Smith chart, polar chart, split screen to show different S-parameters and phases</td>
</tr>
<tr>
<td>System impedance selection</td>
<td>50 ohm and 75 ohm (with 50/75 ohm adapter)</td>
</tr>
</tbody>
</table>

Frequency

Frequency range

| Option 104 | 2 MHz to 4 GHz |
| Option 106 | 2 MHz to 6 GHz |

Frequency reference

- **Accuracy:** ±2 ppm
- **Aging rate:** ±1 ppm
- **Temperature stability:** ±1 ppm over –10 to 55 °C

Frequency resolution

1 Hz

Sweep speed

- **S21, S11:** 2 MHz to 6 GHz, 30 kHz IFBW, 1001 points 0.695 ms/point

Data points

101, 201, 401, 601, 801, 1001, 1601, 4001, 10,001 (custom number of points can be set using SCPI)

Directivity

- **Corrected:** 42 dB
System dynamic range (S21)
2 MHz to 6 GHz: 100 dB (typical)

IF bandwidth
300 Hz, 1 kHz, 3 kHz, 10 kHz, and 30 kHz

Output power range
- **High power:** +6 dBm (nominal)
- **Low power:** −40 dBm (nominal)

Trace noise (high output power, IF bandwidth = 300 Hz)
- **Magnitude:** < 0.01 dB rms

Immunity to interference
- +16 dBm (nominal)

Maximum input level port 1 or port 2
- +23 dBm / ±50 VDC
Cable and antenna analyzer (Option 305)

Capabilities

Return loss

VSWR

Distance-to-fault (DTF):

- Range = \(\frac{(n - 1)}{(span^2)} \times Vf\) (velocity factor in cable) x C (light speed)
- Resolution = range/number of points
- Number of points: 101, 201, 401, 601, 801, 1001
- Distance-to-fault display: Return loss, VSWR, reflection coefficient

Cable loss (1-port):

Terminated cable under test with short

Transmission measurement (insertion loss and gain)

Calibration types

CalReady
One port mechanical calibration
Full 2-port mechanical calibration
Enhanced response calibration
QuickCal (1-port and 2-port)
Automatic cal update with frequency change

Vector network analyzer time domain (Option 010)

Using time domain, data from transmission or reflection measurements in the frequency domain are converted to the time domain. The time-domain response shows the measured parameter value versus time.

Time stimulus modes

Low-pass step
This stimulus, similar to a traditional time domain reflectometer (TDR) stimulus waveform, is used to measure low-pass devices. The frequency-domain data should extend from DC (extrapolated value) to a higher value.

Low-pass impulse
This stimulus is also used to measure low-pass devices.

Bandpass impulse
The bandpass impulse stimulates a pulsed RF signal and is used to measure the time-domain response of band-limited devices.

Windows

The windowing function can be used to filter the frequency-domain data and thereby reduce overshoot and ringing in the time-domain response.

Gating

The gating function can be used to selectively remove reflection or transmission time-domain responses. In converting back to the frequency domain the effects of the responses outside the gate are removed.
FieldFox

Power meter measurement (Option 302)

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>9 kHz to 24 GHz (sensor dependent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB power sensor</td>
<td>9 kHz to 24 GHz: see Agilent U2000 Series USB power sensor specifications for details</td>
</tr>
</tbody>
</table>

General specifications

<table>
<thead>
<tr>
<th>Connector type (port 1 and port 2)</th>
<th>Type N female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test port impedance</td>
<td>50 ohm</td>
</tr>
<tr>
<td>External reference</td>
<td></td>
</tr>
<tr>
<td>Input type:</td>
<td>BNC female</td>
</tr>
<tr>
<td>Reference frequency:</td>
<td>10 MHz</td>
</tr>
<tr>
<td>Required level:</td>
<td>−5 dBm to 10 dBm</td>
</tr>
<tr>
<td>External trigger input</td>
<td></td>
</tr>
<tr>
<td>Impedance:</td>
<td>10 kΩ</td>
</tr>
<tr>
<td>Level range:</td>
<td>Rise edge: 17V; falling edge: 1V</td>
</tr>
<tr>
<td>Display</td>
<td>6.5" transflective, color VGA LED backlit 640 x 480 with anti-glare coating</td>
</tr>
<tr>
<td>Speaker</td>
<td>Built-in speaker</td>
</tr>
<tr>
<td>Headphone jack</td>
<td>Built-in headphone jack</td>
</tr>
<tr>
<td>Connectivity</td>
<td>2 x USB 2.0; 1 x micro USB; 1 x LAN</td>
</tr>
<tr>
<td>GPS</td>
<td>Latitude, longitude, elevation, and accurate time are provided. The GPS information can be displayed on the screen and saved as part of the image or data file. The GPS capability is standard with all N9912A FieldFox RF analyzers. An external USB GPS receiver is required. Agilent recommends the Microsoft Streets & Trips, or Microsoft AutoRoute with GPS locator.</td>
</tr>
<tr>
<td>Internal storage</td>
<td>Minimum 16 MB, up to 1000 traces</td>
</tr>
<tr>
<td>External storage</td>
<td>1 x micro SD slot and 2 x USB 2.0</td>
</tr>
</tbody>
</table>
EMC
Complies with European EMC Directive 2004/108/EC
- IEC/EN 61326-1
- CISPR Pub 11 Group 1, Class A
- AS/NZS CISPR 11
- ICES/NMB-001

ESD
- IEC/EN 61000-4-2, functional up to 20 kV test

Safety
Complies with European Low Voltage Directive 2006/95/EC
- IEC/EN 61010-1 2nd Edition
- Canada: CSA C22.2 No. 61010-1-04
- USA: UL 61010-1 2nd Edition

Environmental
Compliant with MIL-PRE-28800F Class 2 general requirements - no exceptions

Temperature
- **Operating:** –10 °C to 55 °C
- **Non operating:** –51 °C to 71 °C

Weight
6 lbs / 2.7 kg including battery

Dimensions (H x W x D)
292 x 188 x 72 mm (11.5" x 7.4" x 2.8")

Power
- **Power supply**
 - **External DC input:** 15 to 19 VDC
- **External AC power adapter**
 - **Input:** 100 to 250 VAC, 50 to 60 Hz; 1.25 to 0.56 A
 - **Output:** 15 VDC, 4 A
 - **Power consumption:** 14 W (typical)
 - **Battery:** 6 cell Lithium Ion, 10.8 V, 4.6 A-h
 - **Battery operating time:** 3.5 hours

Language
- English, Chinese, French, Spanish, Japanese, Russian, German, Italian, and Turkish
N9923A FieldFox RF vector network analyzer options

- Option 104 4 GHz RF vector network analyzer, transmission/reflection
- Option 106 6 GHz RF vector network analyzer, transmission/reflection
- Option 112 *QuickCal*
- Option 122 Full 2-port S-parameters
- Option 010 Time domain
- Option 305 Cable and antenna analyzer
- Option 302 External USB power sensor support
- Option 308 Vector voltmeter

Standard accessories

- AC/DC adapter; battery; soft carrying case; LAN cable, Quick Reference Guide, and full manual

N9910X RF/MW handheld analyzer accessories

- N9910X-800 T-calibration kit, DC-6 GHz, Type-N (m)
- N9910X-801 T-calibration kit, DC-6 GHz, Type-N (f)
- N9910X-802 T-calibration kit, DC-6 GHz, 7/16 DIN (m)
- N9910X-803 T-calibration kit, DC-6 GHz, 7/16 DIN (f)
- 85514A 4-in-1 OSLT mechanical calibration kit, DC to 9 GHz, Type-N (m), 50 ohm
- 85515A 4-in-1 OSLT mechanical calibration kit, DC to 9 GHz, Type-N (f), 50 ohm

- N9910X-810 Rugged phase-stable cable, Type-N (m) to Type-N (m), 5 ft
- N9910X-811 Rugged phase-stable cable, Type-N (m) to Type-N (f), 5 ft
- N9910X-812 Rugged phase-stable cable, Type-N (m) to Type-N (m), 12 ft
- N9910X-813 Rugged phase-stable cable, Type-N (m) to Type-N (f), 12 ft
- N9910X-814 Rugged phase-stable cable, Type-N (m) to 7/16 (m), 60 inch or 1.5 m
- N9910X-815 Rugged phase-stable cable, Type-N (m) to 7/16 (m), 12 ft or 3.6 m
- N9910X-816 Rugged phase-stable cable, Type-N (m) to Type-N (f), 3.28 ft or 1 m
- N9910X-817 Rugged phase-stable cable, Type-N (m) to Type-N (m), 3.28 ft or 1 m

- N9910X-843 Coaxial adapter, Type-N (m) to 7/16 DIN (f)
- N9910X-845 Adapter kit: Type-N (f) to 7/16 DIN (f), Type-N (f) to 7/16 DIN (m), Type-N (f) to Type-N (f)
- N9910X-846 Coaxial adapter, Type-N (m) 50 ohm to Type-N (f) 75 ohm (recommend quantity 2 for 75 ohm measurements)
- N9910X-860 Fixed attenuator, 40 dB, 100 W, DC-3 GHz, Type-N (m) to Type-N (f)
- N9910X-861 Fixed attenuator, 40 dB, 50 W, DC-8.5 GHz, Type-N (m) to Type-N (f)

- N9910X-870 Extra battery
- N9910X-872 External battery charger
- N9910X-873 AD/DC adapter
- N9910X-874 External bias-tee, 2.5 MHz to 6 GHz, 1 W, 0.5 A
- N9910X-880 Extra soft carrying case with backpack and shoulder strap
- N9910X-875 DC car charger and adapter

- N9910X-881 Hard transit case

For more information go to: www.agilent.com/find/fieldfox
Accessories

- Bias-tee, N9910X-874
- Phase stable cable, N9910X-810
- 100 Watt attenuator, N9910X-860
- Adapter kit, N9910X-845
- T-Cal kits
 - N9910X-800
 - N9910X-801
 - N9910X-802
 - N9910X-803
Soft carrying case with backpack and shoulder straps included with a standard FieldFox. For an extra soft carrying case order N9910X-880.

FieldFox fits inside hard transit case, N9910X-881

AC/DC adapter, N9910X-873

External battery charger, N9910X-872
Agilent Email Updates

www.agilent.com/find/emailupdates
Get the latest information on the products and applications you select.

Agilent Channel Partners

www.agilent.com/find/channelpartners
Get the best of both worlds: Agilent’s measurement expertise and product breadth, combined with channel partner convenience.

Agilent Advantage Services

Agilent Advantage Services is committed to your success throughout your equipment’s lifetime. To keep you competitive, we continually invest in tools and processes that speed up calibration and repair and reduce your cost of ownership. You can also use Infoline Web Services to manage equipment and services more effectively. By sharing our measurement and service expertise, we help you create the products that change our world.

www.agilent.com/find/advantageservices

www.agilent.com/quality

ISO 9001:2008
DEKRA Certified

www.agilent.com/find/fieldfox
www.agilent.com/find/im_forum

For more information on Agilent Technologies’ products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas

Canada (877) 894 4414
Brazil (11) 4197 3600
Mexico 01800 5064 800
United States (800) 829 4444

Asia Pacific

Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 375 8100

Europe & Middle East

Belgium 32 (0) 2 404 93 40
Denmark 45 45 80 12 15
Finland 358 (0) 10 855 2100
France 0825 010 700*
*0.125 €/minute
Germany 49 (0) 7031 464 6333
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
United Kingdom 44 (0) 118 927 6201

For other unlisted countries:

www.agilent.com/find/contactus

Revised: January 6, 2012

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2012
Published in USA, April 3, 2012
5990-5087EN

Photos throughout this document courtesy of:
U.S. Air Force
U.S. Marines
U.S. Army