

F4T Configuration Note:

The user can specify the units of temperature measurement over Ethernet independently from the display in addition to other Modbus settings. The default is Modbus Data Map = 1 which the examples are based upon. Other Modbus Data Map selections have exclusive use cases. The Modbus Word Order is settable between Low/High and High/Low. The default is Low/High. If set to High/Low, change the decoding accordingly. Navigate on touch screen to Main Menu, Settings, Network, Ethernet to change IP addressing, Modbus Display Units, Modbus TCP Enable, Modbus Word Order and Modbus Data Map selections.

Modbus TCP Configuration Note:

Modbus TCP uses port 502. The user specifies the PC/PLC timeout setting to determine when a typical response on the network is received. Ensure the entered value in the software driver is greater than the typical response time to prevent timeout errors. The Modbus standard does not specify a maximum response time.

Sent to F4T - Read (32-bit) Slot 1, Analog Input 1 value

Binary	Hex	Decimal	Purpose	
00000001	0x01	1	Controller Address	
00000011	0x03	3	Function Code - Read Holding Registers	
01101011	0x6B	107	Read Starting at register High Byte (Analog Input 1 value in slot 1 is contained in registers 27586 & 27587)	
11000010	0xC2	194	Read Starting at register Low Byte (Analog Input 1 value in slot 1 is contained in registers 27586 & 27587)	
00000000	0x00	0	Read number of consecutive registers – High Byte (Always 0)	
00000010	0x02	2	Read number of consecutive registers – Low Byte (1 to 125)	

Received from F4T - Read Slot 1, Analog Input 1 value of 88.261°F (32-bit)

Binary	Hex	Decimal	Purpose	
00000001	0x01	1	Controller Address	
00000011	0x03	3	Function Code – Read Holding Registers	
00000100	0x04	4	Number of data bytes returned	
10000101	0x85	133	Data High Byte of 1st register read – MSB of LSW	
10000001	0x81	129	Data Low Byte of 1st register read – LSB of LSW	consecutive registers
01000010	0x42	66	Data High Byte of 2 nd register read – MSB of MSW	
10110000	0xB0	176	Data Low Byte of 2 nd register read – LSB of MSW	consecutive registers

Description of example above:

Slot 1, Analog Input 1 value is contained in two 16-bit registers. Register 27586 contains the two lower bytes (least significant word, LSW) while register 27587 contains the two higher bytes (most significant word, MSW). High register 27587 and low register 27586 contain 0x42B08581. The 32-bit answer in IEEE 754, float data type is 88.26075.

The packet described is assembled and sent to the F4T as one continuous stream of bits per the Modbus standard. The packet returned from the F4T is decoded per the Modbus standard.

In this example, we extract 0x8581 0x42B0 from the packet for the answer. Changing the Modbus Word Order to High Word, Low Word we see the answer is 0x42B08581.

1

Watlow 1241 Bundy Blvd Winona, MN 55987 Telephone (507) 494-5656 © 2015 Watlow Electric Manufacturing Company

General steps to read registers.

Assemble a packet to send the controller:

- 1. Controller address to read is always 1.
- 2. Determine function code for read. Example: Function Code (0x03) Read Holding Registers or Function Code. (0x04) Read Input Registers. The F4T responds to both command with the same information.
- 3. Determine Modbus relative registers to read (27586 & 27587 decimal for Slot 1, Analog Input 1 value).
- 4. Convert register numbers to hexadecimal.
- 5. Determine number of registers to read.
- 6. Enter 0x00 for number of registers to read high byte.
- 7. Enter number of registers to read low byte from previous step into packet. As many as 125 registers may be read with one read command. Example: Use 0x02 registers to retrieve one 32-bit value. Use 0x04 to retrieve four consecutive registers which might contain two 32-bit values or four 16-bit values or other combinations.
- 8. Open port 502 of Ethernet port assigned.
- 9. Send packet as one continuous stream to IP address.
- 10. Wait for response from controller.
- 11. If no response or exception code returned, enter error routine per standard.

Process the packet received based on these steps:

- 12. Parse answer from packet based on number of bytes returned.
- 13. Convert answers to appropriate data type. Some data is 32-bit floating point values while enumerated data is 16-bit unsigned integer values. In very few registers, the data type is 32-bit unsigned integer values. A column in the F4T User's Guide provides the relative register address, the data type and whether the register is read only or read/write capable.

Please note that the difference between a Modbus RTU packet and a Modbus TCP packet is that Modbus TCP uses the same Modbus RTU packet without the CRC and encapsulates the packet into an Ethernet packet using the Modbus TCP protocol. The Modbus controller address is always 1 while the IP address determines which controller on the network to access.

2

MSB = Most significant byte LSB = Least significant byte MSW = Most significant word LSW = Least significant word CRC = Cyclic Redundancy Check

Sent to F4T - Write (32-bit) Set Point 1 of 75.0°F

Binary	Hex	Decimal	Purpose	
00000001	0x01	1	Controller Address	
00010000	0x10	16	Function Code – Write Multiple Registers	
00001010	0x0A	10	Write Starting at register High Byte (Set Point 1 is register 2782 & 2783)	
11011110	0xDE	222	Write Starting at register Low Byte (Set Point 1 is register 2782 & 2783)	
00000000	0x00	0	Write number of consecutive registers – High Byte (Always 0)	
00000010	0x02	2	Write number of consecutive registers – Low Byte (1 to 123)	
00000100	0x04	4	Number of Bytes to Write (always 2 x write number)	
00000000	0x00	0	Data High Byte of 1st register write – MSB of LSW	
00000000	0x00	0	Data Low Byte of 1st register write – LSB of LSW consecutive registers	
01000010	0x42	66	Data High Byte of 2 nd register write – MSB of MSW	
10010110	0x96	150	Data Low Byte of 2 nd register write – LSB of MSW consecutive registers	

Received from F4T - Writing Set Point 1 of 75.0°F

Binary	Hex	Decimal	Purpose
00000001	0x01	1	Controller Address
00010000	0x10	16	Function Code – Write Multiple Registers
00001010	0x0A	10	High Byte of Register 2782 decimal – Start writing at register
11011110	0xDE	222	Low Byte of Register 2782 decimal – Start writing at register
00000000	0x00	0	High Byte – number of registers written
00000010	0x02	2	Low Byte – number of registers written

Description of example above:

The Set Point for control loop 1 of the F4T is contained in two 16-bit registers. Register 2782 contains the two lower bytes (least significant word, LSW) while register 2783 contains the two higher bytes (most significant word, MSW). The 32-bit value is an IEEE 754, 32-bit float data type. Floating point writes must always be accomplished using a Function Code - Multiple Write Registers command.

The packet described is assembled and sent to the F4T as one continuous stream of bits per the Modbus standard. The packet returned from the F4T is decoded per the Modbus standard.

In this example, we write a set point of 75.0.

0x42960000 = 75.0 degrees when read/written as a 32-bit float data type 0000 4296 is in Low Word (LSW), High Word (MSW) Order.

Register 2780 is written with LSW of 0x0000

Register 2781 is written with MSW of 0x4296

Watlow 3 RGH 08/10/18

General steps to write registers are:

Assemble a packet to send the controller:

- 1. Controller address to write is always 1.
- 2. Determine function code for write. Example: Function Code (0x10) Write Multiple Registers or Function Code (0x06) Write Single Register. The F4T uses Write Multiple Registers for all 32-bit values.
- 3. Determine starting Modbus relative registers to write.
- 4. Convert and enter register number to hexadecimal.
- 5. Enter 0x00 for number of consecutive registers to write high byte.
- 6. Enter 0x02 for number of consecutive registers to write low byte.
- 7. Enter 0x04 for the number of bytes to write -4 bytes is for a 32-bit value.
- 8. Enter the data to write. For 32-bit floating values, use low word/high word order.
- 9. Send packet as one continuous stream to IP address.
- 10. Wait for response from controller.

Process the packet received based on these steps:

- 11. If no response or exception code returned, enter error routine per standard.
- 12. Validate response matches sent packet.

RGH 08/10/18

Additional details -

Some process values may be rounded off to fit into the five-character display of the F4T.

Full floating-point process values are readable via Modbus. The displayed units of measurement are independent of the units of measurement sent via communications.

The controller may be set to display in °C on the F4T touchscreen but utilize °F in communication exchanged values. For Modbus settings, see 'Main Menu', 'Settings', 'Network', 'Ethernet' to configure IP Address Mode, IP Fixed Address / Subnet Mask, Modbus Display Units, Modbus TCP Enable, Modbus Word Order and Modbus Data Map settings. The Display Units in the Network settings affects the communications values exchanged while the Temperature Units in 'Settings', 'Global' affect the displayed values on the F4T touchscreen.

All temperature parameters exchanged via communications are in °F through Modbus by default. Modbus Word Order is Low High by default. Modbus Data Map is set to 1 by default and should not be changed unless compatibility to a legacy F4 controller is needed with a limited number of registers available. See the F4T User's Guide for Modbus register assignment and additional information. To prevent unintended programming changes never write values until you have read the desired register and validated it as the correct register assignment.

By default, the low register number contains the two lower bytes (least significant word); high register numbers contain the two higher bytes (most significant word) of the four-bytes for 32-bit floating-point values.

• To change the word order, set parameter Modbus Word Order 'Low High' to 'High Low'. For Modbus settings, see 'Main Menu', 'Settings', 'Network', 'Ethernet' to configure IP Address Mode, IP Fixed Address / Subnet Mask, Modbus Display Units, Modbus TCP Enable, Modbus Word Order and Modbus Data Map settings.

The F4T has 6 slots that may be populated with various cards. The assigned Modbus register is based on the allocated function and may be affected by the location of the card.

The only function codes supported in the F4T are – Function Code (0x03) – Read Input Registers Function Code (0x04) – Read Holding Registers Function Code (0x06) – Write Single Register Function Code (0x10) – Write Multiple Registers

Visit http://www.modbus.org for a free download of the Modbus RTU and Modbus TCP implementation specifications. Visit http://www.watlow.com/literature/software.cfm and locate Modbus TCPTest for a free sample program to test communication with Modbus TCP.

Visit http://www.modbusdriver.com/shop/product_info.php?product_id=66 for a third-party Modbus software driver. The software may be purchased from ModbusDRIVER.com and is an excellent buy to get your software quickly talking to Modbus devices when writing a .NET application. The software driver includes their technical support assistance. See the documentation for converting between relative versus absolute Modbus addressing for a given driver.

Visit https://www.wireshark.org/download.html for a free data capture program when working with Ethernet. This is an excellent program to capture data transfer between Ethernet devices for analysis.

5