The global AC power testing requirements demand more sophisticated AC Power Source that is capable of simulating a wide variety of AC line conditions, harmonic waveforms, accurate power measurements and analysis. Chroma 6500 Series Programmable AC Power Source delivers the right solution to simulate all kinds of normal/abnormal input conditions and measure the critical characteristics of the products under test. It can be utilized in R&D design, production test, and QA verification for commercial, industrial, and aerospace electronic products.

Chroma 6500 Series AC Power Source delivers the maximum rated power for the output voltage up to 300 Vac, and the frequency between 15Hz to 2000Hz. It is suitable for commercial applications (47-63Hz) such as avionics, marine, and military applications at 400Hz or higher frequency; or for electrical motor, air-conditioner test applications at 20Hz. All models generate very clean sine or square waveforms output with typical distortion less than 0.5%.

Chroma 6500 Series has been designed to provide programmable high precision waveform. For the product tests under AC line distortion conditions, clipped sine wave can be generated with 0% to 43% distortion and amplitude from 0% to 100%. It also can simulate all kinds of power line disturbances such as cycle dropout, transient spike, brown out, phase angle, voltage and frequency ramp up (ramp down), etc. Up to 30 harmonic waveforms are factory-installed, and testing for compliance to AC line harmonic immunity standards can be easily achieved in the field.

The 6500 Series has been built in 16-bit precision measurement circuit to offer precision and high-speed measurements for Vrms, Irms, Ipk+, Ipk-, power, frequency, crest factor, power factor, inrush current, VA, VAR, etc. It is designed as an integral part of the PMS power measurement system. By adding the 6630 Power Analyzer it becomes an Automatic Test Equipment (ATE) to perform IEC 1000-3-2 harmonic tests and IEC 1000-3-3 flicker measurements.

The 6500 Series provides easy operation through the front panel keypad, or remote controller via IEEE488.2, RS-232C bus or APG (Analog Programming) interface. Instrument drivers are available to integrate the AC source into the ATE application operations under Labview control.

Designed with self-diagnostic routine and protections against overload, overpower, over temperature, over current and fan fail, the 6500 Series instrument has the qualities and reliability that can suit for the most demanding production line applications.
AC Power Source Offers Outstanding AC Test-performance

- Power line disturbance simulation testing
- Servo motor, synchro motor testing
- Lamp circuit testing
- AC ballast testing
- Relays, switches testing
- TRIACs, SCRs and passive components testing
- Power supply input function & environmental testing
- UPS function & environmental testing
- PC and monitor testing
- Avionics testing of military and aircraft
- Air-conditioner testing
- Transformers testing
- Breakers, fuses testing
- Product safety testing
- IEC standard compliance testing
1. Advanced PWM Technology

The input AC to DC stage in the AC Source incorporates modern power factor correction circuit to increase the input power factor more than 0.98 to meet the IEC regulations. It reduces the input current requirement and raises the efficiency up to over 80%. Using the isolation provided by DC to DC stage, the final DC to AC output stage eliminates the heavy low frequency output transformer, and decreases the weight to 30 Kgs only. The model 6530, packaged in 8 3/4 inches height rack-mountable unit, delivers full 3,000 VA output at 110V or 220V (while many competitors specify 3KVA output at 140V or 280V only).

2. State-of-the-art DDS Waveform Generator

Chroma 6500 Series AC Power Source has built in powerful Direct Digital Synthesis (DDS) waveform generator to provide low distortion (0.5%) sine or square waveform over a maximum frequency range from 15 to 2000Hz, with 0.01Hz (15 - 99.99Hz) resolution and 0.15% accuracy. For example, a unique clipped sine wave with 0% to 43% distortion and 0 to 100% amplitude can be generated by pressing the front panel keys for testing products under ac line distortion conditions.

3. Comprehensive Waveform Library

Up to 30 different distortion waveforms including line conditioner, line filter, triangle wave, pulse wave, and peak spike, etc. are stored in the waveform library for execution. Users can preview the selected waveform on the LCD graphic display by pressing the “WAVE” soft key. To specify the waveform amplitude desired at each specific phase angle can modify the stored waveforms.

Testing for compliance to ac line harmonic immunity standards can be easily achieved. Sine wave with harmonic content specified by IEC 1000 standards can be recalled, downloaded into memory, and generated as needed.

Additionally, Chroma 6500 Series AC Power Source offers six user-defined arbitrary waveform buffers. Users can create the desired waveforms from a host PC and download them to the instrument through IEEE488 or RS-232C interface.

4. Transient Power Line Disturbance Simulation

In addition to programming the steady output voltage and frequency, the AC Source provides a powerful tool to simulate all kinds of power line disturbance conditions. The step and pulse modes offer an easy and convenient method to execute single step or continue output changes. The output voltage amplitude, frequency, phase angle, and waveform shape can be controlled in response to input trigger generated from an internal or external event. With this capability, it is easy to simulate power line disturbances such as cycle dropout, transient spike, brown out, and ramp up, etc. This feature is very important for the maximum inrush current test when the UUT is switched on at 90 degrees, so is for the UUT’s ride-through effect check when an AC input transient spike is applied.

The List transient mode extends this capability further for more complex waveform generation needs. Up to 40 sequences of output setting can be precisely executed in response to a triggered or paced dwell time programmed in advance without computer intervention. Output triggers can be generated at the beginning and the end of each List loop setup to synchronize external events and to simulate power line disturbances for Voltage Dip & Variation to meet IEC 1000-4-11.
5. Powerful Measurement

This instrument has 16-bit precision measurement circuit built-in and firmware utilities to measure the steady and transient responses of true RMS voltage, true RMS current, true power, power factor, frequency, peak repetitive current, inrush current, current crest factor, VA (apparent power), and VAR (reactive power). Using the high-speed sampling circuit, it can display the measured voltage and current as a waveform on the LCD display for transient state analysis without the need of a scope.

6. Versatile Operation

Chroma 6500 Series AC Source is easy to operate using the front panel keypad, or a remote controller. The printer interface is also available for printing out the instrument conditions or measurement readings. In ATE applications, model 6530 is controlled via IEEE 488, RS-232C, or Analog Programming Interface.

The instrument is designed with user friendliness in mind. It uses thermo-control DC Fan and the speed increases only when internal temperature rises and calls for more heat ventilation. This minimizes the acoustic noise from the fan during operation. The large size 320 x 240 LCD shows the test setup and operating status with the most comfortable visual effect possible. The software improves user interface by creating soft-keys to guide users during test execution. The rotary knob input enables users to adjust the voltage, frequency, and parameter setting on the fingertip with maximum speed and control.

7. Self Diagnosis and Protection

The instrument has built-in self-diagnosis routine to calibrate its performance and assist trouble shooting for failure. It is protected against over voltage, overload, over current, overpower, over temperature to ensure the instrument quality and performance for all kinds of applications in R&D, QA, Production, and field services.

8. IEC 1000 Compliance testing

The instrument is designed as an integral part of the PMS power measurement system. The PMS system is an entirely new concept for fast and accurate power related measurements in compliance with international standards. The PMS system consisting of an advanced Chroma 6630 Power Analyzer and a 6500 Series or other Chroma family AC Power Source is the ATE for Voltage and Current harmonics test in compliance with IEC 555-2, EN60555-2, IEC 1000-3-2, and Flicker (voltage fluctuations) test following the IEC 555-3, EN60555-3, and IEC 1000-3-3 international standards.
1. LCD Display: 320 x 240 graphic LCD display to show the test setup, operating status, readings and waveforms.

2. Soft-Key: 5 soft keys adjacent to the command block display on the LCD that provide users a menu driven interface to control the AC Source operation.

3. Cursor Key: For cursor movement.

4. Edit Key: To enter into editing mode for real voltage adjustment and frequency setting by pressing Up/Down keys or Rotary Knob.

5. Local Key: Use to switch the system control from Remote Mode to Local Mode.

6. Numeric Key: For data setting

7. Rotary Knob: Use to adjust the voltage, frequency and parameter setting.

8. Power Switch

10. RS-232C Interface

11. Output Terminal

12. Remote Sense: The remote sense/feedback circuit guarantees the output accuracy and stability.

13. GPIB Interface

14. Input Terminal

15. Special I/O Port

16. Printer Interface

17. System I/O Port: The Sync, Clock, and Vref. ports for system expansion.

18. Cooling Fan

Waveform Library

Up to 30 different Distortion Waveforms are stored in the Waveform Library for user edit and execution.
Waveform Library

Up to 30 different Distortion Waveforms are stored in the Waveform Library for user edit and execution.

Please refer to the user’s manual for more factory-installed Waveforms and specifications.
PROGRAMMABLE AC POWER SOURCE

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>6512</th>
<th>6520</th>
<th>6530</th>
<th>6560</th>
<th>6590</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output/Phase</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 (parallel or series)</td>
<td>1 for 3 selectable</td>
</tr>
</tbody>
</table>

OUTPUT RATINGS

<table>
<thead>
<tr>
<th>Power/Phase</th>
<th>Voltage</th>
<th>Range/Phase</th>
<th>Accuracy</th>
<th>Resolution</th>
<th>Distortion</th>
<th>Line Regulation</th>
<th>Load Regulation</th>
<th>Temp. Coefficient</th>
<th>Max. Current/Phase</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1200VA</td>
<td>150V / 300V</td>
<td>0.5% of F.S. (15~45 Hz)</td>
<td>0.1V</td>
<td>1% (15~45 Hz)</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.02% per°C</td>
<td>12A/6A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000VA</td>
<td>150V / 300V</td>
<td>0.2% of F.S. (45~2K Hz)</td>
<td>0.1V</td>
<td>0.5% (45~500 Hz)</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.02% per°C</td>
<td>20A/10A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000VA</td>
<td>150V / 300V</td>
<td>0.2% of F.S. (45~2K Hz)</td>
<td>0.1V</td>
<td>0.5% (45~500 Hz)</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.02% per°C</td>
<td>30A/15A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6000VA</td>
<td>150V / 300V (parallel)</td>
<td>0.2% of F.S. (45~2K Hz)</td>
<td>0.1V</td>
<td>0.5% (45~500 Hz)</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.02% per°C</td>
<td>60A/30A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000VA</td>
<td>300V / 500V (series)</td>
<td>0.5% of F.S. (45~2K Hz)</td>
<td>0.1V</td>
<td>0.5% (45~500 Hz)</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.02% per°C</td>
<td>30A/15A</td>
<td></td>
</tr>
</tbody>
</table>

INPUT RATINGS

<table>
<thead>
<tr>
<th>Voltage Range</th>
<th>190 ~ 250 V, 1ø</th>
<th>190 ~ 250 V, 1ø</th>
<th>190 ~ 250 V, 1ø</th>
<th>190 ~ 250 V, 3ø</th>
<th>190 ~ 250 V, 3ø</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>47 ~ 63 Hz</td>
</tr>
<tr>
<td>Current</td>
<td>10A max.</td>
<td>15A max.</td>
<td>23A max.</td>
<td>35A max./phase</td>
<td>35A max./phase</td>
</tr>
<tr>
<td>Power Factor</td>
<td>0.95 min.</td>
<td>0.95 min.</td>
<td>0.95 min.</td>
<td>0.98 min.</td>
<td>0.98 min.</td>
</tr>
</tbody>
</table>

MEASUREMENT

<table>
<thead>
<tr>
<th>Voltage/Phase</th>
<th>Range</th>
<th>0 ~ 150V / 0 ~ 300V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy (rms)</td>
<td>0.1% F.S. + 0.2%</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>0.1V</td>
<td>0.1V</td>
<td>0.1V</td>
<td>0.1V</td>
<td>0.1V</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power/Phase</th>
<th>Accuracy</th>
<th>1% F.S. (CF<6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>0.01W</td>
<td>0.01W</td>
<td>0.01W</td>
<td>0.01W</td>
<td>0.01W</td>
<td></td>
</tr>
</tbody>
</table>

OTHERS

Efficiency	80% (Typical)				
Protection	OPP, OLP, OTP, FAN Fail				
Temperature	Operating	0 ~ 40°C			
Storage	-40 ~ +85°C				
Safety & EMC	CE (Include LVD and EMC Requirement)				
Dimension	425x222x620 mm	425x222x620 mm	425x222x620 mm	546x845x700 mm	546x1065x700 mm

1. Test under output voltage from half to full range.
2. Test with sinewave & with remote sense.
All specifications are subject to change without notice.

Developed and Manufactured by: CHROMA ATE INC.

Worldwide Distribution and Service Network

Distributed by TestEquity Inc., 800-732-3457

http://www.chromaate.com

E-mail: chroma@chroma.com.tw