MP1632C
Digital Data Analyzer
50 MHz to 3.2 GHz

3.2 Gb/s PPG and ED in One Cabinet
Eye Diagram Measurement and Burst Signal Measurement Supported
Core networks and computer networks are becoming increasingly rapid as the volume of data transmitted in this multimedia data is growing.

In addition to the STM-16/OC-48 (2.488 Gbit/s), Fibre channel, Giga-bit Ethernet, etc. are being commercialized. Compact and high performance digital data analyzer are required for production inspections of all kinds of digital transmission systems, optical modules, and logic devices.

MX163201A TEXT to MP1632A/C Pattern Conversion Software,

MX163202A MP165X to MP1632A/C Pattern Conversion Software,

MX163205A Q and Eye Analysis Software, and MX163206A SDH/SONET Pattern Editor are available as application software.
Easy to View, Superb Operability
The MP1632C comes with a large color LCD with touch screen. Moreover, it employs Microsoft® Windows® operating system Version 3.1. In addition to the graphic display of measurement results, customized screens enable one-key and one-parameter operation.

High-Quality Pulse Pattern Generator
Programmable patterns of 8 Mbit max, PRBS patterns [(2^7–1) to (2^{31}–1), variable mark ratio], and zero substitution patterns can be generated. Moreover, variable cross-point of data output waveform is also supported.

Error Detector with Many Functions
High input sensitivity (25 mVp-p*) and wide phase margin (250 ps*) performance is provided. The autosearch function enables PRBS pattern search with usual phase and threshold search. Insertion error and omission error can be measured simultaneously.

*Typical values at 3 Gb/s, PRBS 2^{23}–1

Internal synthesizer with High Signal Purity (Option)
Generates highly pure signals with SSB phase noise characteristics of –85 dBc/Hz or less (10 kHz offset).

Support of Various Applications
- Testing of SDH/SONET (STM–0, 1, 4, 16/OC–1, 3, 12, 48) devices and modules
- Research and development on WDM components, Fibre channels, Giga-bit Ethernet
- Evaluation of E/O and O/E module, GaAs IC and high-speed ASIC/FPGAs

Eye margin measurement for evaluating waveform quality
Phase margin and threshold margin can be measured using various error rate. Eye diagram display is also supported.
Burst Signal Measurement
It is popular to use optical fiber circulating loop for testing long distance transmission. In this case, data signal is burst signal. Pulse Pattern Generator unit can generate burst signals and Error Detector unit can measure BER of input burst signal.

Burst signal measurement for fiber loop test
One-Key/One-Parameter Operation using Customized Screens
To make measurement settings simpler, the MP1632C has the convenient one-key/one parameter operation used previously in the Anritsu bit error rate test sets, as well as customized screens.

Pattern editor (time mode)

Powerful Pattern Editor Function
The MP1632C pulse pattern generator and error detector PRGM patterns can be edited easily using the keyboard, mouse, or cursor keys. There are two editing modes matching the various applications: Time and table. The Time mode puts time on the horizontal axis and displays the pattern as a horizontal line. The table mode displays the pattern as a memory table image using either binary or hexadecimal code.

Easy-to-Use Interface
Useful setting and pattern data can be saved as a file to either 3.5" FD or the large-capacity internal hard disk. In addition, video-out and printer interfaces for displaying screens and measurement results are provided as standard. Moreover, the standard RS-232C I/F, optional GPIB I/F and Ethernet I/F permit the analyzer to be controlled by a host allowing configuration of advanced measurement systems.
Easy-to-use Large LCD with Touch Panel

The MP1632C can be operated using touch keys, a mouse, a ten-key/rotary encoder, and a large color LCD with touch screen. The analyzer uses the Microsoft® Windows® operating system version 3.1; the hierarchy of measurement parameter levels has been decreased for better usability.

3.5" FDD
This is an MS-DOS format 1.44 MB/740 KB mode disk drive.

3.2G Error Detector
This unit has a burst trigger input.

3.2G Pulse Pattern Generator
Burst trigger output is enabled.

Data Input Keys
These keys are used to input numeric values, alphabetic characters and units. Alphabetic input uses pattern data editing in HEX code.

Rotary Encoder Knob
The outer ring of the knob is used to input continuously-variable numeric values for the frequency and output level, etc. The inner part is used as the ∧, ∨, <, and > functions, and as the cursor key for selecting measurement parameters.
keyboard, thus meeting the needs and preferences of all users.
Application Software

MX163205A Q/Eye Analysis Software
- Eye diagram and eye margin automatic measurement
- Displays a mask figure for the evaluation on the screen
- Q-factor (ITU-T G.976) automatic measurement

MX163206A SDH/SONET Pattern Editor
- Support OC-1 (STM-0) to OC-48c (STM-1bc) mapping
- Alarm addition (OOF, LOF, MS-AIS, REI, RDI)
- BIP error addition (B1, B2, B3)
- Support "no frame" pattern
Specifications

MU163220C 3.2G Pulse Pattern Generator

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating frequency</td>
<td>10 MHz to 3.2 GHz (50 MHz to 3.2 GHz when using MP1632C-03 3.2G Internal Synthesizer)</td>
</tr>
<tr>
<td>External clock input</td>
<td>0.5 to 2 Vp-p (<0.5 GHz: square wave, ≥0.5 GHz: square wave or sine wave, 50% duty cycle)</td>
</tr>
<tr>
<td>Generation pattern</td>
<td>Pseudo random pattern (PRBS)</td>
</tr>
<tr>
<td>Pattern length:</td>
<td>2^n–1 (n: 7, 9, 11, 15, 20, 23, 31)</td>
</tr>
<tr>
<td>Mark ratio:</td>
<td>1/2, 1/4, 1/8, 0/8, 1/2, 3/4, 7/8, 8/8</td>
</tr>
<tr>
<td>AND bit shift upon mark ratio setting:</td>
<td>1, 3 bits</td>
</tr>
<tr>
<td>Data pattern:</td>
<td>Data length: 2 to 8,388,608 bits</td>
</tr>
<tr>
<td>Zero substitution pattern:</td>
<td>Continuous 0 bit length: 1 to (pattern length – 1) bits</td>
</tr>
<tr>
<td>Pattern length:</td>
<td>2^n (n: 7, 9, 11, 15)</td>
</tr>
<tr>
<td>Error insertion</td>
<td>Error ratio: 10^n (n: 3, 4, 5, 6, 7, 8, 9), single error</td>
</tr>
<tr>
<td></td>
<td>External error input: Provided</td>
</tr>
<tr>
<td>Data output</td>
<td>Number of outputs: 2 (DATA/DATA, independent)</td>
</tr>
<tr>
<td>Amplitude:</td>
<td>0.5 to 2 Vp-p (10 mV steps)</td>
</tr>
<tr>
<td>Offset voltage:</td>
<td>V_{OH} = 2 to +2 V (5 mV steps)</td>
</tr>
<tr>
<td>Display:</td>
<td>V_{OH}, V_{NH}, and V_{OL} selectable</td>
</tr>
<tr>
<td>Rise/fall time:</td>
<td>≤80 ps (10% to 90% of amplitude)</td>
</tr>
<tr>
<td>Pattern jitter:</td>
<td>≤30 psp-p</td>
</tr>
<tr>
<td>Waveform distortion:</td>
<td>10% or 0.1 V of amplitude, whichever is greater</td>
</tr>
<tr>
<td>Load impedance:</td>
<td>50 Ω (with back termination)</td>
</tr>
<tr>
<td>Connector:</td>
<td>SMA</td>
</tr>
<tr>
<td>DATA/DATA tracking:</td>
<td>DATA amplitude and offset voltage can be set to same value as DATA.</td>
</tr>
<tr>
<td>Crosspoint adjustment function:</td>
<td>Provided</td>
</tr>
<tr>
<td>Clock output</td>
<td>Number of output: 2 (CLOCK/CLOCK, independent)</td>
</tr>
<tr>
<td>Amplitude:</td>
<td>0.5 to 2 Vp-p (10 mV steps)</td>
</tr>
<tr>
<td>Offset voltage:</td>
<td>V_{CH} = –2 to +2 V (5 mV steps)</td>
</tr>
<tr>
<td>Display:</td>
<td>V_{CH}, V_{NH}, and V_{OL} selectable</td>
</tr>
<tr>
<td>Rise/fall time:</td>
<td>≤80 ps (10% to 90% of amplitude)</td>
</tr>
<tr>
<td>Load impedance:</td>
<td>50 Ω (with back termination)</td>
</tr>
<tr>
<td>Connector:</td>
<td>SMA</td>
</tr>
<tr>
<td>Clock delay:</td>
<td>–1 to +1 ns (2 ps steps)</td>
</tr>
<tr>
<td>External burst trigger input</td>
<td>Input level: 0–1 V, connector: SMA</td>
</tr>
<tr>
<td>Internal burst signal</td>
<td>Burst cycle: 2 μs to 50 ms (1 μs steps)</td>
</tr>
<tr>
<td>Enable length:</td>
<td>1 μs to 49,999 ms (1 μs steps)</td>
</tr>
<tr>
<td>Burst trigger output</td>
<td>Output level: 0–1 V, connector: SMA</td>
</tr>
<tr>
<td>Sync signal output</td>
<td>Number of outputs: 1 (1/8 clock, variable pattern synchronization output selectable)</td>
</tr>
<tr>
<td>Output level:</td>
<td>0–1 V</td>
</tr>
<tr>
<td>Connector:</td>
<td>SMA</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>+5 to +45°C</td>
</tr>
<tr>
<td>Power</td>
<td>≤200 VA</td>
</tr>
<tr>
<td>Dimensions and mass</td>
<td>232 (W) x 49 (H) x 449 (D) mm, ≤4.5 kg</td>
</tr>
</tbody>
</table>

MU163240C 3.2G Error Detector

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating frequency</td>
<td>10 MHz to 3.2 GHz</td>
</tr>
<tr>
<td>Data input</td>
<td>Input waveform: NRZ</td>
</tr>
<tr>
<td>Input voltage:</td>
<td>0.5 to 4 Vp-p</td>
</tr>
<tr>
<td>Variable threshold voltage:</td>
<td>–4 to +4 V (1 mV steps)</td>
</tr>
<tr>
<td>Termination:</td>
<td>Connected to GND, –2 V or +3 V via 50 Ω</td>
</tr>
<tr>
<td>Connector:</td>
<td>SMA</td>
</tr>
<tr>
<td>Clock input</td>
<td>Input waveform: Square wave (<0.5 GHz), square wave or sine wave (≥0.5 GHz), duty: 50%</td>
</tr>
<tr>
<td>Input amplitude:</td>
<td>0.5 to 4 Vp-p</td>
</tr>
<tr>
<td>Variable input delay:</td>
<td>–1 to +1 ns (2 ps steps)</td>
</tr>
<tr>
<td>Polarity inversion:</td>
<td>POS/NEG inversion selectable</td>
</tr>
<tr>
<td>Termination:</td>
<td>Connected to GND, –2 V or +3 V via 50 Ω</td>
</tr>
<tr>
<td>Connector:</td>
<td>SMA</td>
</tr>
<tr>
<td>Auto search function</td>
<td>Phase, threshold, PRBS pattern (allowed if the mark ratio is between 1/8 and 7/8)</td>
</tr>
</tbody>
</table>
Receive pattern
- Pseudo random pattern (PRBS)
 - Pattern length: $2^n - 1$ (n: 7, 9, 11, 15, 20, 23, 31)
- Marker ratio: 1/2, 1/4, 1/8, 1/16, 3/4, 7/8, 8/8
- AND bit shift upon marker ratio setting: 1, 3 bits
- Data pattern
 - Data length: 2 to 8,388,608 bits
- Zero substitution pattern
 - Continuous 0 bit length: 1 to (pattern length – 1) bits
 - Pattern length: 2^n (n: 7, 9, 11, 15)

Sync mode
- Normal, frame

Sync threshold
- AUTO or 10^(-n) (n: 2, 3, 4, 5, 6, 7, 8)

Error detection mode
- Omission, insertion, total

Measurement items
- Error rate: 0.0000×10^{-16} to 1.0000×10^{-9}
- Number of errors: 0 to 9,999,999
- Error interval (async): 0 to 999,999,999 (interval: 100 ms, 1 s)
- Error free interval (EFI): 0.0000 to 100.0000%
- Clock frequency: 0.01 to 3.2 GHz (resolution: 1 Hz, accuracy: ±10 ppm ±1 kHz)

Eye margin measurement function
- Provided

Error performance calculation function
- Provided

Measurement channel mask
- 1 to 8 channels, each channel settable independently

Error output
- Number of output: 1 (1/32 bit rate OR error)
- Output level: 0/–1 V
- Connector: SMA

Sync signal output
- Number of outputs: 1 (switchable among 1/8 clock, fixed pattern sync, sync gain output)
- Output level: 0/–1 V
- Connector: SMA

Burst trigger input
- Input level: 0/–1 V, connector: SMA

Operating temperature
- +5° to +45°C

Power
- ≤250 VA

Dimensions and mass
- 232 (W) x 54 (H) x 449 (D) mm, ≤5 kg

MP1632C (Main frame)

System environment
- OS: Microsoft® Windows® operating system version 3.1
- Display: 10.4 inch, color LCD (touch screen), 640 x 480 dots, 256 colors
- Printer: Parallel port for external printer (D-sub, 25-pins)
- Keyboard: 101 type (English), PS/2 (mini DIN 6-pin connector)
- Mouse: Serial, PS/2 (mini DIN, 6-pin connector)
- FDD: 2 modes (1.44 MB, 740 KB)
- HDD: C drive: ≥474 MB (used for system: measurement data, pattern)
- D drive: ≥30 MB (Not accessible to users, interface: IDE)

Remote control
- RS-232C (standard), GPIB (option): IEEE488.2, Ethernet (option): 10 Base-T

EMC

LVD
- EN61010: 1993/A2: 1995(Installation Category II, Pollution degree2)

Power supply
- 100 to 120 Vac/200 to 240 Vac, 47.5 to 63 Hz, ≤150 VA

Operating temperature
- +5° to +45°C

Dimensions and mass
- 426 (W) x 221.5 (H) x 451 (D) mm, ≤20 kg

3.2G Internal Synthesizer (Option 03)

Frequency range
- 50 MHz to 3.2 GHz (1 kHz steps)

Frequency accuracy
- ±2 ppm

SSB phase noise
- ≤–85 dBc/Hz (10 kHz offset, 1 kHz bandwidth)

Non-harmonic spurious
- ≤–60 dBc (limited to spurious 10 kHz or more distant from carrier frequency)

Power
- ≤50 VA

Mass
- ≤5 kg

Microsoft Windows is a registered trademark of Microsoft Corporation in USA and other countries.
MX163201A TEXT to MP1632A/C Pattern Conversion Software

Required system

Computer: IBM-PC/AT or full compatible, OS: Windows 3.1/95/98, CPU: Pentium 133 MHz or higher, Memory: 32 MB or more, Hard disk space: 25 MB or more

Display
Resolution: 640 x 480 or more, Display colors: 256 or more
FDD: 3.5-inch (1.44 MB)

Text file

A text file describing the program pattern in hex format (maximum number of characters in a line: 32696 bits including spaces and return characters)

MP1632A pattern data file (PTN)

All the MP1632A/C set data and patterns (file format for reading/writing on the MP1632A/C main screen)

MP1632A/C pattern clip file (PCP)

Only patterns (file format that can be read or written in the MP1632A/C Pattern Editor)

MX163202A MP165X to MP1632A/C Pattern Conversion Software

Required system

Computer: IBM-PC/AT or full compatible, OS: Windows 95/98/NT, CPU: Pentium 166 MHz or higher, Memory: 64 MB or more, Hard disk space: 100 MB or more

GPIB: National Instruments made GPIB interface (PCMCIA-GPIB or AT-GPIB/TNT series boards are recommended)

Display
Resolution: 800 x 600 or more, Display colors: 256 or more
*If two or more applications are running simultaneously, operation cannot be guaranteed.

Measurement frequency: 1 to 3.2 GHz
Measurement patterns: PRGM, PRBS 7, 9, 11, 15, 20, 23, 31
Pattern format: Continuous/burst (To be synchronized within 1 s)
Eye margin measurement
- Measurement resolution (threshold): 1 to 10 mV (1 mV steps)
- Measurement resolution (phase): 2 to 10 ps (2 ps steps)
- Measurement rate: E-2 to E-15
Eye diagram measurement
- Measurement resolution (phase): 2 to 10 ps (2 ps steps)
- Measurement rate: E-2 to E-15 (actual measurement), E-3 to E-12 (estimate measurement)
- Display rate: E-2 to E-15 (actual measurement), E-2 to E-4915 (estimate measurement)
- Mask test judgment rate: E-2 to E-15
Q factor measurement
- Measurement style: Multiple measurements at fixed phase/phase vs. Q factor measurements
- Bit error rate range: Upper limit at E-3 to E-5, lower limit at E-7 to E-12
- Minimum error count (measurement accuracy): 1, 10, 100, 1000
- Vth shift width: Automatic, fixed (1 to 10 mV/1 mV steps)

Function

Frame repetition
- Maximum 26 frames
Alarm addition
- Alarm addition conforming to SDH/SONET Standard
- Items: OOF/LOF, MS-AIS (L-AIS), MS-REI (L-REI), HP-AIS (P-AIS), HP-REI (P-REI), HP-RDI (P-RDI)
BIP error addition
- Generates parity errors of B1, B2, and B3
B1, B2, and B3 calculation
- Available
Scramble
- Available
BIP correction
- Available
OH editor
- Available

Note: Since the FD format of MP165X is 1.2 MB, the PC must read 1.2 MB format FD.

MX163205A Q and Eye Analysis Software

Required system

Computer: IBM-PC/AT or full compatible, CPU: Pentium 200 MHz or higher, OS: Windows 95/98/NT, Memory: 64 MB or more

Display
Resolution: 800 x 600 or more; Display colors: 256 or more
FDD: 3.5-inch (1.44 MB), Hard disk space: 100 MB or more,
GPIB: National Instruments made GPIB interface (PCMCIA-GPIB or AT-GPIB/TNT series boards are recommended)

SDH/SONET pattern editor

Mapping: STM-N (N = 1, 4c, 12c, 16c), STS-N SPE (N = 1, 3c, 12c, 48c)
Pattern edit: Arbitrary editing of program patterns (PRBS pattern can be inserted in the payload), time indication, table indication/edit Payload:
- Free format, ALL 0, ALL 1, PRBS 2 n – 1 (n = 7, 9, 11, 15, 20, 20z, 23, 31) Pattern repetition up to the length of all frames
CID pattern: Available
Frame repetition: Maximum 26 frames
Alarm addition
- Alarm addition conforming to SDH/SONET Standard
- Items: OOF/LOF, MS-AIS (L-AIS), MS-REI (L-REI), MS-REI (L-REI), HP-AIS (P-AIS), HP-REI (P-REI), HP-RDI (P-RDI)
BIP error addition
- Generates parity errors of B1, B2, and B3
B1, B2, and B3 calculation: Available
Scramble: Available
BIP correction: Available
OH editor: Available

Windows is a registered trademark of Microsoft Corporation of the U.S. in the United States and other countries. IBM and AT are registered trademarks of International Business Machines. Pentium is a registered trademark of Intel Corporation. PCMCIA-GPIB and AT-GPIB/TNT are registered trademarks of National Instruments.
Ordering Information

Please specify model/order number, name and quantity when ordering.

<table>
<thead>
<tr>
<th>Model/Order No.</th>
<th>Name</th>
<th>Model/Order No.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP1632C-01</td>
<td>GPIB</td>
<td>JP1632C-E-A-1</td>
<td>3.2G Pulse Pattern Generator²</td>
</tr>
<tr>
<td>MP1632C-02</td>
<td>Ethernet</td>
<td>Z0416</td>
<td>Keyboard (PS/2)</td>
</tr>
<tr>
<td>MP1632C-03</td>
<td>3.2G internal synthesizer (50 MHz to 3.2 GHz)</td>
<td>Z0321A</td>
<td>3.5 inch head cleaning disk</td>
</tr>
</tbody>
</table>

Standard accessories

<table>
<thead>
<tr>
<th>Model/Order No.</th>
<th>Name</th>
<th>Model/Order No.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0090</td>
<td>Power cord (shielded): 1 pc</td>
<td>J0008</td>
<td>GPIB cable, 2 m</td>
</tr>
<tr>
<td>Z0319A</td>
<td>Fuse, 8 A: 2 pcs</td>
<td>MB24B</td>
<td>Portable test Rack (specified current: 10 A)</td>
</tr>
<tr>
<td>Z0320</td>
<td>Input pen: 1 pc</td>
<td>B0348</td>
<td>Soft case</td>
</tr>
<tr>
<td>Z0396A</td>
<td>Pen holder: 1 pc</td>
<td>B0329D</td>
<td>Front cover (1 MW 5U)</td>
</tr>
<tr>
<td>Z0393</td>
<td>Application disk*: 1 set</td>
<td>B0333D</td>
<td>Rack mount kit</td>
</tr>
<tr>
<td>W1859AE</td>
<td>MP1632C operation manual: 1 copy</td>
<td>B0447A</td>
<td>Dummy unit to shut CG unit space</td>
</tr>
<tr>
<td>W1860AE</td>
<td>MP1632C remote control operation manual: 1 copy</td>
<td>B0447C</td>
<td>Dummy unit to shut PPG unit space</td>
</tr>
<tr>
<td>B0447B</td>
<td>Dummy unit to shut EXT unit space: 1 pc</td>
<td>B0447D</td>
<td>Dummy unit to shut ED unit space</td>
</tr>
</tbody>
</table>

Application software

<table>
<thead>
<tr>
<th>Model/Order No.</th>
<th>Name</th>
<th>Model/Order No.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MX163201A</td>
<td>TEXT to MP1632A/C Pattern Conversion Software</td>
<td>MU163220C</td>
<td>3.2G Pulse Pattern Generator²</td>
</tr>
<tr>
<td>MX163202A</td>
<td>MP165X to MP1632A/C Pattern Conversion Software</td>
<td>W1857AE</td>
<td>MU163220C/163240C operation manual*³: 1 copy</td>
</tr>
<tr>
<td>MX163205A</td>
<td>Q and Eye Analysis Software</td>
<td>Z0398</td>
<td>Ethernet installation disk (for Option 02)</td>
</tr>
<tr>
<td>MX163206A</td>
<td>SDH/SONET Pattern Editor</td>
<td>W1529AE</td>
<td>Ethernet operation manual (for Option 02)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Options</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP1632C-01</td>
<td>GPIB</td>
</tr>
<tr>
<td>MP1632C-02</td>
<td>Ethernet</td>
</tr>
<tr>
<td>MP1632C-03</td>
<td>3.2G internal synthesizer (50 MHz to 3.2 GHz)</td>
</tr>
</tbody>
</table>

Standard accessories

<table>
<thead>
<tr>
<th>Model/Order No.</th>
<th>Name</th>
<th>Model/Order No.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>J0693A</td>
<td>Coaxial cord (HRM202B • 3D2W • HRM202B), 1 m: 1 pc</td>
<td>J0696A</td>
<td>Coaxial cord (AA-165-500), 0.5 m: 2 pcs</td>
</tr>
<tr>
<td>W1857AE</td>
<td>MU163220C/163240C operation manual: 1 copy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Application software

<table>
<thead>
<tr>
<th>Model/Order No.</th>
<th>Name</th>
<th>Model/Order No.</th>
<th>Name</th>
</tr>
</thead>
</table>

Standard accessories

<table>
<thead>
<tr>
<th>Model/Order No.</th>
<th>Name</th>
<th>Model/Order No.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>J0693A</td>
<td>Coaxial cord (HRM202B • 3D2W • HRM202B), 1 m: 1 pc</td>
<td>J0696A</td>
<td>Coaxial cord (AA-165-500), 0.5 m: 2 pcs</td>
</tr>
</tbody>
</table>

Application software

<table>
<thead>
<tr>
<th>Model/Order No.</th>
<th>Name</th>
<th>Model/Order No.</th>
<th>Name</th>
</tr>
</thead>
</table>

*1 Only for MP1632C customer
*2 Units are factory options (not user replaceable).
*3 Not supplied when 3.2G Pulse Pattern Generator purchased as same time.

Specifications are subject to change without notice.